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In this analysis, the translation of a liquid drop experiencing a strong non-uniform 
radial velocity has been investigated. The situation arises when a moving liquid drop 
experiences condensation, evaporation or material decomposition at the surface. By 
simultaneously treating the flow fields inside and outside the drop, we have obtained 
physical results relevant to the problem. The magnitude of the radial velocity is 
allowed to be very large, but the drop motion is restricted to slow translation. The 
solution to the problem has been developed by considering a uniform radial flow with 
the translatory motion introduced as a perturbation. The role played by the inertial 
terms due to the strong radial field has been clearly delineated. The study has revealed 
several interesting features. An inward normal velocity on a slowly moving drop 
increases the drag. An increasing outward normal velocity decreases the drag up to 
a minimum beyond which it increases. The total drag force not only consists of 
contributions from the viscous and the form drags but also from the momentum 
transport at  the interface. Since the liquid drop admits a non-zero tangential velocity, 
the tangential momentum convected by the radial velocity forms a part of this drag 
force. The circulation inside the drop decreases (increases) with an outward (inward) 
normal velocity. A sufficiently large non-uniform outward velocity causes the 
circulation to reverse. 

In the limit of the internal viscosity becoming infinite, our analysis collapses to 
the simple case of a translating rigid sphere experiencing a large non-uniform radial 
velocity. By letting the radial velocity become vanishingly small the Stokes-flow 
solution is recovered. 

An important contribution of the present study is the identification of a new 
singularity in the flow description. It accounts for both the inertial and the viscous 
forces and displays Stokeslet-like characteristics at infinity. 

1. Introduction 
In this paper we examine the flow fields associated with the translation of a liquid 

drop experiencing internal circulation in the presence of a large non-uniform radial 
velocity. This situation arises, for example, when there is a rapid change of phase 
or material decomposition at  the interface. In the area of liquid-spray cooling, large 
normal velocities are encountered owing to condensation on moving drops. For 
evaporating liquid aerosols, large radially outward velocities are observed. The 
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oxidation near the interface of a burning spray fuel drop often results in the net 
production of a gas, leading to  a large radial field (see Law 1982). These areas of 
application would benefit from the understanding of the detailed fluid mechanics 
governing the external forced flow and its coupling with the internal circulation. In  
particular, knowledge of the drag force and the strength of the internal vortex is of 
fundamental interest for the further development of these areas. 

The analysis here calls for the simultaneous solution of the flow fields in the 
dispersed and the continuous phases. The coupling of the two phases a t  the interface 
requires the inclusion of the viscous forces. In  addition, the presence of the large 
normal velocity at the interface leads to significant inertial forces. The earliest 
examinations of the coupled problem with an impenetrable but mobile interface 
include the classical papers by Rybczynski (1911) and Hadamard (1911). Further 
studies on drop deformation were carried out by Saito (1913) and by Taylor & Acrivos' 
(1964). The case of a non-zero normal velocity has been treated by Fendell, Sprankle 
& Dodson (1966), Gal-Or & Yaron (1973) and Schneider (1981). All of these solutions 
are valid strictly for the Stokes-flow regime and hence cannot accommodate a large 
radial field. Excellent reviews in the area of moving drops have been given by Clift, 
Grace & Weber (1978) and by Harper (1972). The literature on the problem related 
to the motion of a rigid sphere is quite extensive and will not be reviewed here. 
However, it is noteworthy that  the problem of a translating rigid sphere experiencing 
a large non-uniform radial flow is a special case of our analysis when the internal 
viscosity becomes infinite. 

Although a large uniform radial flow is an exact solution to the full Navier-Stokes 
equations, i t  cannot be superimposed on the Hadamard-Rybczynski flow even for 
a slowly translating drop. This is because of the importance of the nonlinear inertial 
terms whenever the radial field is large. I n  this paper the effects of a strong normal 
velocity are examined by retaining both the viscous and the inertial terms. We do 
this by considering a drop with a purely radial field and by subsequently introducing 
the translation as a small perturbation. A regular perturbation scheme is used to 
calculate the first-order correction. This correction is found to be uniformly valid. 

Several important results are obtained from this solution. In particular, analytical 
expressions are given for the drag force and the strength of the internal vortex. The 
detailed analysis reveals a very interesting behaviour of these quantities. The drag 
force decreases with increasing outward non-uniform velocity up to a minimum, 
beyond which it increases. An increasing inward normal velocity consistently 
increases the drag. Also, with a large enough outward velocity, the internal 
circulation within the drop reverses its direction of motion. A detailed discussion on 
the various mechanisms that participate in the characterization of such behaviour 
is given later. While the present contribution deals with the fundamental aspects of 
the fluid dynamics, specific applications to heat and mass transfer associated with 
a translating liquid drop are given in forthcoming publications (see e.g. Chung, 
Ayyaswamy & Sadhal 1983a, b ) .  

2. Statement of problem 
We consider a liquid drop of radius R with a uniform normal velocity A ,  at the 

outer surface. The drop translates a t  a velocity U ,  in a gaseous medium. In  addition 
to the uniform velocity A,, the radial field is enhanced by an amount al(0) due to 
translational effects (see figure 1 ) .  The shape of the drop is taken to remain spherical. 
The drop deformation for many situations of interest can be shown to be insignificant 
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Uniform stream U- 

Non-uniform radial velocity A , +  a ,  (0)  

FIGURE 1. A schematic of the flow problem under investigation. 

(Clift et al. 1978). A spherical coordinate system, with the origin a t  the centre of the 
drop, is employed to formulate the governing equations. The inside of the drop 
(0 < r < R) is distinguished from the outside (R < r < CO) by a ‘hat’ (-). The flow 
is axially symmetric with velocity u(r ,  0) having two components (ar, u ~ ) .  

The velocity fields in both the dispersed and the continuous phases are taken to 
be quasisteady. The quasisteady aspect can be easily justified in view of the large 
ratio of the liquid to the gas phase densities. The implication of the large density ratio 
is that the rate of change of the liquid volume due to the interfacial transport is small, 
even though the radial velocity A ,  may be large. The rate of change of the drop radius 
is of order- P 

P 
R = A,; ,  

where p and $ are the densities of the continuous and the dispersed phases 
respectively. The timescale governing substantial change in the drop size is therefore 

R $ R  td = - = --. 
R PA, 

On the other hand, a typical diffusion time is 

R2 t =-, 
, v  (3) 

where v is the kinematic viscosity of the continuous phase. 
In order that we may neglect the transient effects due to size changes, t ,  < tk,  or 

A R  $ 
U P  

A,, = 0 4 - .  (4) 

With the high density ratioblp x lo3 for most liquid-gas systems, the radial Reynolds 
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number A,, may be as large as 10. Under these conditions, the quasisteady 
approximation for the velocity field is valid. Also because of the large density ratio, 
the normal velocity on the liquid side of the surface is negligibly small. It is therefore 
assumed that the radial velocity on the inner side of the interface vanishes. 

continuity : 
The governing equations for this system are 

v-u = 0, (5)  

veil = 0;  (6) 

(7)  

(8) 

pu' vu + u p  = pv=u, 

pil. vil + vjj = $V20. 

momentum : 

The boundary conditions are 
(i) uniform stream a t  infinity: 

u, = U ,  cos8, t hg  = - U ,  sine; 
(ii) normal velocity: 

(iii) continuity of tangential velocity: 

urIr-R = AO+al(o), fir1r-R = 0 ;  

u61r-R = fi81r-R; 

(iv) continuity of shear stress: 

(v) finite velocity at the origin: 
4,+0 < a. 

The translation-induced normal velocity a,(@ in (9b) is treated as an arbitrary 
parameter which may be determined by the prevailing thermodynamics of system. 
However, in many situations involving interfacial transport, it  has the same 
characteristics as the translational field (see Chung et aE. 1 9 8 3 ~ ) .  Hence we shall 
examine a velocity variation of the type 

(10) 

The enhancement due to translation is more pronounced a t  the front stagnation point 
(8 = n, see figure l ) ,  and the maximum value of la,(O)l occurs there. The sign of a,, 
is thus opposite to that of A,  and sol. 

al(8) = a,, +a,, COB 8. 

3. Solution by perturbation 

the surface. In  the absence of translation the velocity u, is 
Let the leading-order velocity field be a purely radial flow with a velocity A,  at 

R2 A u, = A -r ,  
O r 2  

where P is a unit vector in the radial direction. To account for translation, corrections 
u' and 6' are implemented, viz 

u = u,+u', (12) 

il = il, +a / ,  (13) 
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where ii, is equal to zero. The corresponding pressures may be written as 

P = P,+PO‘? (14) 

@ = j j ,+@l,  (15) 
where 9, is a constant. 

In  order to non-dimensionalize the governing equations it is appropriate to scale 
u, with A,, and u1 and ii’ with U,. Thus u$ = u,/A, ,  u’* = u’ /U, ,  a’* = iif/Um, 
A,, + A,, cos @ = (a,, + a,, cos @)/Urn,  r* = r / R ,  E = U ,  Rlv ,  A,, = A,  R / v ,  q5F = p / i ,  

and V* = RV. By defining a non-dimensional velocity in the gas phase as 
u* = uR/v ,  we may write 

$v = v/; = (P/P)/(&/$9 P$ = PO/(AOP/R), PI* = P‘ / (U ,P /R) ,  $ I *  = @ / ~ U , & / R ) >  

I(* = A,, U$ +€I(’*. (16) 
Similarly, with li* = iiRfv i t  is easy to  see that 

A a* = ReGI* 
A 

where Re = U,  R / $  is the Reynolds number for the liquid phase. The pressure is 
scaled in a similar fashion. I n  the gas (vapour) phase, with p* = pR2/pv  we obtain 

The pressure in the liquid phase may be scaled with @?/R2 to yield 

where do, = A ,  R / ; .  

continuity : 

p* = A,,p$+ep’*. (18) 

@* = A,,@,* i- Re@‘* (19) 

V m ( A , , u O + ~ ~ ’ )  = 0, (20) 

A 

The non-dimensional governing equations (with the asterisks omitted) are 

V.(€i i ’ )  = 0; 
momentum : 

At ,  U, * VU,  + A,, E ( U ,  VU’ + U’ * VU,)  + e2u’ * VU’ + A,, V p  + eVp’ = A,, V2u, + eV2u’, 
122 1 

Re fi’ * + V@‘ = V2fi’ ; (23 ) 

(24a) 

[Uor + 4 1 r +  , = e cos 8, 

A 

boundary conditions : 

[uOB+eu~],,, = -€sine, 

q 5 p [ r ~ ( A o o u o s + E u h )  + - - ( A , , ~ , , . + E u ~ ) ] ~ ~ ~  l a  = E [ r-  :r(y) - +-- , ( 2 4 d )  
r r ae r a@ ,.-l 

(24 e )  
We now introduce the perturbation scheme u‘ = I(, + eu2 + . . . , p‘ = p ,  + ep2 + . . . , 

where U‘ and p’ are dimensionless variables with the asterisks dropped. In  view of 
(16) and (18) we may write 

A /  A ,  

%,u,lr+o < 0. 

u = A,,u,+eu1+e2u2+...,  (25 a) 

P = Aoop, + €pi+  e2pz + . . ., (256)  
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where u and p also are dimensionless. It is not necessary to perturb u' because an 
exact solution of the liquid-side momentum equation can be obtained, as will be 
shown later. 

By substituting (25)  into (20-24) and equating powers in e we obtain the following. 

v*u, = 0, 

A,, U, * VU, + Vp = V2u0, 

Order .so: 

with boundary conditions 

Uorlr+m = UoeIT-+a = 0, Uorlr-1= 1, uoe lr - i=  0, 

The solution for the above set is 1 ,  u, = - r .  
r2 

The liquid phase does not have any internal flow field to this order. 

V*U, = 0, 

v . ii' = 0, 

A,,(u,. vu1+ 241- VU,) + vp1 = v2u,, 

Order el: 

Re ii' * Vd'+ VfY = V W ,  
with boundary conditions 

1 
I 

Uirly+ = cos 8, 

U1,&+a, = -sin 8, 

UIrlr-1 = A,,+ A,, ~ 0 ~ 8 ,  

- 1 = 0, 

" I  

U1Ar-1 = Uelr-1, 

We introduce stream functions and 4 for the gas and the liquid phases 
respectively. The continuity equations (30)-(31) are identically satisfied by letting 
the velocities be 
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With these velocities, the momentum equations (32), (33) become 

(37) 

(38) (0 < r c I ) ,  

In  view of (39a-c) we assume solutions of the form 

$1 = -A01p+H4 (1 - P 2 ) ,  

+ = h(r) (1  -P"* 
The substitution of (40) into (37) yields 

The general solution of (42) is 

where B, C, E and F are integration constants. The substitution of (41) into (38) leads 
to 

($ - :)(-$ - : ) g ( r )  = 0. 
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A solution of (44) satisfying (39c, e )  is 
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or 
(45) 

(46) 
A 

which is Hill’s spherical vortex with strength Re I?. 
To determine the behaviour of the gas-phase solution a t  infinity, we need to carry 

out an asymptotic expansion of the integral in (43). With x = ?-/A,,, the integral may 
be written as 

h(x) = - (t4 + c3) e-l/< dt .  (47) 
1 / 4 0  

Successive integration by parts leads to  the following behaviour for large x: 

[x5+x4-9x3+#x2-~x+0 ( l o g ~ ) ] e - l / ~ .  (48) 
1 

h(x) - - 
5x 

The expansion of e-l/x for large x gives 

h(x) N i $ z 4 - - ~ x 2 + ~ x - ~ + O  -1ogx . (49) (: 1 
The behaviour of h(x) = O(x4) is not proper for a finite velocity field as r = A,, x+ OC, . 
However, x4 and x2 are two linearly independent solutions of (42) in addition to (47). 
We may therefore subtract (Qx4 -+x2) from h(z)  and still maintain linear 
independence. 

Thus, in order for $l to behave like a uniform stream a t  infinity,f(r) takes the form 

After satisfying the remaining boundary conditions ( 3 9 M )  we obtain 

(1 - All) [ 1 -:A:, - (1 + A,, + &42,,) e-Aoo] + +A:,( 1 - e-A~a) 

- 1 +4(3 + 2q5& At,+ (1 + Aoo-~q5pA~o)  e c A o o  
’ = ” { 

The complete dimensionless stream function for the gas phase is thus given by 

$ = - A  O O P + E  [-Ao,rc+i,f(r) (1 --F2)1+O(E2). 

For the liquid phase the stream function is given by (46). 
The dimensionless velocities may now be written as 

(54) 
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A ,  
fir = Re B(r2 - 1 )  cos 8 ,  

as = -Re B(2r2 - 1 )  cos 8. 

(554 

( 5 5 4  
A ,  

4. Drag-force calculation 
The drag force on the liquid drop consists of contributions from the viscous stresses, 

the pressure and the momentum flux at the interface. The viscous drag in dimensionless 
form is 

F;l* = ,uUl ' R = $ J': [arr cos 8 - uro sin 61, - sin 8 do, (56)  

where urr and gre are the viscous stresses. In  terms of the dimensionless velocities, 

(57) 
4x [(3+2$,)-A11(1+2$,)1[(2+240+ 00 

-1+i (3+2$, )  A t , + ( l  + A , , - ~ p A ~ o ) e - A o o  A2 )e-Aoo-211. 
- ---( 

3 

To calculate the pressure drag Fp we first obtain the pressure distribution using 
the momentum equation. The leading-order term p ,  makes no contribution to the 
drag. Only p,, which is obtained by integrating the 8-component of (32), is used. In  
dimensionless form the @momentum equation is 

Integration with respect to 8 gives 

where G is a constant. The dimensionless pressure drag is 
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The force F& = Fm/,uUu, R due to the momentum flux a t  the interface is given by 

F& = "r- [u, U, cos 6-u, ug sin el,,, sin 8 d6. 
€ 0  

We include the terms only up to the first order to obtain 

which is equal to 

[ ( 3  + 29,) -All(  1 + 29J] [(A,,  + At,) e-Aoo- A,, 
y& = $ { - A o o ( ~ + A ~ ~ ) +  - 1 + i (3  + 29J A:, + (1  + A,, - +q5u At,) epAoo 

(63) 
The total drag is the sum F* = F* + F; + F& given by 

F* = -- 3A,,+- 
3 2A0, 

A calculation of the total drag a t  infinity yields an identical expression. 

5. Identification of a new singularity 
In view of the usefulness of singularity distributions in the description of many 

types of flows (see e.g. Johnson & Wu 1979; Wu & Yates 1976), we have paid special 
attention to the identification of a new singularity. For this purpose it is convenient 
to associate a source strength m = 4nA, R2 with the uniform radial field. In addition, 
A,, and A,, are set equal to zero. The dimensional stream function Y = $R2 may 
now be written as 

Y = -mcosB+ge (54++3)e-1/5d5-+54++B 

where r is the dimensional radial coordinate, y = 4nrv/m and 5, = 4nRv/m. Here the 
first term represents a point source; the second, a uniform stream, and the third, a 
doublet. The last term is proportional to 

This result represents a new singularity in which both the inertial and the viscous 
forces are accounted for. At large distances from the origin ( r +  m) this singularity 
behaves like 1 

S - -rsin2B, (67) 
8 v  

which is a Stokeslet. The singularity S in (66) behaves also like a Stokeslet in the 
special case of A,  becoming vanishingly small. This type of behaviour is to be 
expected because for A ,  becoming small the entire flow field collapses to the Stokes-flow 
limit. 

In  (66) yo may be arbitrarily chosen. It is quite clear that changing c, is equivalent 
to adding (or subtracting) a doublet to the singularity. The result is valid for both 
a source and a sink. In  the case of a sink, yo must be non-zero for the integral to exist. 
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The flow field for the translation of a liquid drop or a rigid sphere with a strong 
radial field may be constructed by superimposing a point source and a doublet on 
the singularity 8. The new singularity is particularly important in that i t  may be 
used to construct several other types of flows for which the viscous as well as the 
inertial effects may be significant. 

6. Results and discussion 
In  this section we examine the interesting features resulting from the analysis. The 

flow streamlines are plotted for typical cases and their behaviour is discussed. The 
various factors governing the drag force and the strength of the internal vortex are 
ascertained. 

6.1. The $ow field 

For illustrative purposes the streamlines of the flow corresponding to A,, = & 2 ,  
A,, = f0.25, $p = 0.1 and e = 0.5 are plotted in figure 2. For radially outward normal 
velocity (A,, > O), streamlines emanate from the surface and follow the uniform 
stream. Near the front of the drop, the radial flow and the uniform stream oppose 
each other. As a result a stagnation point is formed there as shown in figure 2. For 
the inward flow (Aoo < 0) a stagnation point is similarly formed near the rear of the 
drop. I n  this case, some of the streamlines from the uniform stream end on the surface 
of the drop. 

For both A,, > 0 and A,, < 0 the flow field inside the drop is Hill’s spherical vortex. 
Only the strength of the vortex is different. This will be discussed in $6.3. 

6.2. The drag force 

The expression for the drag force given by (64) is plotted in figure 3. We notice 
that for an outward radial velocity, with its maximum a t  the front, there is a decrease 
in the drag with increasing A,, until a minimum is reached. Subsequently the drag 
increases with an asymptotic behaviour like 

F* N - 4 ~  3+2$ZAo0 1 +2# { [ (3+2$,) + (1+2$,) 1 I?+...), A;, (68) 

where A,, < 0. The decrease in drag is due to the vorticity being convected away 
from the surface, and due to the reduction in the pressure drop from the front to the 
rear stagnation points. I n  fact, for a sufficiently large radial velocity, we have a larger 
pressure a t  the rear than a t  the front, giving rise to a negative pressure drag. This 
may be explained by an examination of the negative contribution of the inertial term 
-$m- u towards the pressure distribution. With the maximum radial velocity at the 
front of the drop, a strong inertial effect would lead to a higher pressure at the rear. 
A competing mechanism opposing the motion is the normal reaction of the momentum 
flux leaving the surface. With the maximum flux a t  the front of the drop, the recoil 
increases the drag. With increasing A,, this force becomes the dominating effect, 
resulting in an increasing total drag. In  the special case of a uniform radially outward 
velocity (All = 0), the drag continues to decrease with increasing Aoo. We further 
notice that with sufficient non-uniformity in the radial velocity (A, ,  2 3) the drag force 
increases with decreasing drop viscosity. Such an effect is apparent from the 
examination of (64). This feature is also exhibited in t,he case of Stokes flow. 

Next, for an inward normal velocity (Aoo < 0), the drag on the drop increases 
monotonically with increasing - Aoo. Here the vorticity is convected towards the 
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Figure 2 (a). For caption see facing page. 

surface, and hence the viscous drag increases. The surface pressure variation causes 
a reduction in the drag force as i t  does in the case of the outward velocity. However, 
the momentum deposited non-uniformly on the surface creates a stronger net force 
opposing motion. It is interesting to note that, for both outward and inward normal 
velocities, the net momentum flow at the surface opposes the motion when the 
maximum magnitude of the velocity is a t  the front. In the former case the force is 
due to the recoil of the momentum leaving, while in the latter case i t  is due to the 
impact of the inward flux. This result is mathematically evident from the positive 
value of u,u, in (61). 

The interfacial momentum transport also affects the drag through the tangential 
momentum convected radially inwards or outwards. This is obvious from the non-zero 
u,uB term in (61). For a solid sphere this effect is absent. 

For the case in which the maximum of the radially outward velocity occurs a t  the 
rear stagnation point (e.g. the burning of the wake), a qualitative description of the 
flow is still possible from our analysis. By letting both A,, and A,, be positive we 
predict that  the drag is reduced in conformity with experimental observation (see 
Baker 1970). 
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E = 0.5 

Aoo = -2 
A, ,  = -0.5 
A , ,  = 0.25 

@J,=O.l 

FIGURE 2. Flow streamlines for a moving drop with (a) outward and 
(b )  inward radial velocities. 

I n  the limit of letting A,, become vanishingly small in (64) we recover the results 
appropriate to Stokes flow. An asymptotic expansion for small A,, gives 

The first term in this expression is the total drag force for Stokes flow. The next term 
represents a departure from this approximation. It is clear from the first term that 
with Stokes flow the effect of the normal velocity only manifests itself through the 
angular dependence (All + 0). Gal-Or & Yaron (1973) applied a correction to the first 
term for small A,, by using Stokes-flow velocities to  calculate the momentum flux 
a t  the interface. Their analysis did not yield our second term above because their 
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FIQURE 3. The drag force as a function of increasing radial velocity: 
(a) outward flow; ( b )  inward flow. 
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FIGURE 4. Variation of the strength of internal vortex with radial velocity: 
(a) outward flow; ( b )  inward flow. 
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correction - pui uj, while accounting for the inertial effects, is apparently inconsistent 
with their Stokes-flow assumption, which neglects inertia in the velocity and pressure 
calculation. 

6.3. The internal circulation 

The internal circulation provides an important mechanism for the heat and/or mass 
transfer associated with moving drops. The strength of the internal vortex is therefore 
not only a highly useful parameter in the modelling of such systems, but is also 
necessary in the actual evaluation of the extent of transport. We find that for 
increasing radially outward velocity the strength of the vortex decreases. This is to 
be expected because of the reduced vorticity a t  the surface, as discussed earlier. For 
an inward normal velocity the strength increases. An expression for this strength is 
given by (53),  and the numerical values are plotted in figure 4. A remarkable feature 
of the evaporating drop is that with a sufficiently large radial velocity the internal 
circulation vanishes. A further increase in A,, reverses the circulation. This very 
interesting result is due to the non-uniformity of the radial field, which, with its 
maximum at the front of the drop, provides a shear stress to oppose the usual 
circulation. With increasing radial velocity, the vorticity resulting from translation 
is convected away, while the shear stress due to the non-uniformity in the normal 
velocity persists. Consequently the internal circulation weakens to a point where the 
latter force dominates and causes a reversal. Further investigation into the time- 
dependent transition of the flow reversal is currently under way. 

In the limit of A,, becoming vanishingly small we recover the vortex strength for 
Stokes flow. In the case of uniform normal velocity (All = O ) ,  the result from Stokes 
flow shows no dependence on A,,. This is evident because the Stokes approximation 
does not include the inertial effects which are primarily responsible for altering the 
vortex strength. 

The authors are very grateful to Dr Andrea Prosperetti (Istituto di Fisica, Milano, 
Italy) for valuable discussion on this paper, and to the referees who made useful 
suggestions. This research was partially supported by the National Science Foundation 
(MEA-8023861). 
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